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Abstract. In this report, we study geometric algebras of Type EC (these algebras are
constructed from an elliptic curve in the projective plane). By using the defining relations
of 3-dimensional Sklyanin algebras, we determine the defining relations of geometric
algebras of Type EC. Also, we give criterion to check when two geometric algebras of
Type EC are graded algebra isomorphic and graded Morita equivalent.

1. Geometric algebras

Through this report, let k be an algebraically closed field of characteristic 0, A a
graded k-algebra finitely generated in degree 1. That is, A = k⟨x1, · · · , xn⟩/I, where
deg xi = 1 for any i = 1, · · · , n, and I is a homogeneous two-sided ideal of k⟨x1, · · · , xn⟩
with I0 = I1 = 0. We call A = k⟨x1, · · · , xn⟩/I a quadratic algebra if I is an ideal
of k⟨x1, · · · , xn⟩ generated by homogeneous polynomials of degree two. We denote by
GrModA the category of graded right A-modules. Morphisms in GrModA are right A-
module homomorphisms preserving degrees. We say that two graded algebras A and A′

are graded Morita equivalent if the categories GrModA and GrModA′ are equivalent. We
denote by Pn−1 the n− 1 dimensional projective space over k.

For a quadratic algebra A = k⟨x1, · · · , xn⟩/I, we set

ΓA := {(p, q) ∈ Pn−1 × Pn−1 | f(p, q) = 0 for all f ∈ I2},
where, for points p = (p1 : · · · : pn), q = (q1 : · · · : qn) ∈ Pn−1 and a homogeneous
polynomial f =

∑
i,j αi,jxixj of degree two, we define f(p, q) :=

∑
i,j αi,jpiqj.

A notion of geometric algebra was introduced by Mori [6].

Definition 1 ([6]). Let A = k⟨x1, · · · , xn⟩/I be a quadratic algebra.

(1) We say that A satisfies (G1) if there exists a pair (E, σ), where E is a closed
k-subscheme of Pn−1 and σ ∈ Autk E, such that

ΓA = {(p, σ(p)) ∈ Pn−1 × Pn−1 | p ∈ E}.
In this case, we write P(A) = (E, σ), called the geometric pair of A.

(2) We say that A satisfies (G2) if there exists a pair (E, σ), where E is a closed
k-subscheme of Pn−1 and σ ∈ Autk E, such that

I2 = {f ∈ k⟨x1, · · · , xn⟩2 | f(p, σ(p)) = 0, for all p ∈ E}.
In this case, we write A = A(E, σ).
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(3) A is called geometric if A satisfies both (G1) and (G2), and A = A(P(A)).

Note that, if A satisfies (G1), then A determines the pair (E, σ) by using ΓA. Conversely,
if A satisfies (G2), then A is determined by the pair (E, σ).

The following theorem tells us that classifying geometric algebras is equivalent to clas-
sifying their geometric pairs.

Theorem 2 ([6]). Let A and A′ be geometric algebras with P(A) = (E, σ) and P(A′) =
(E ′, σ′) where E and E ′ are closed k-subschemes of Pn−1, σ ∈ Autk E and σ′ ∈ Autk E

′.

(1) A ∼= A′ if and only if there exists τ ∈ Autk Pn−1 which restricts to an isomorphism
from E to E ′ such that the following diagram commutes:

E
τ−−−→ E ′

σ

y yσ′

E
τ−−−→ E ′

(2) A and A′ are graded Morita equivalent if and only if there exists a sequence {τi}i∈Z
where τi ∈ Autk Pn−1 restricts to an isomorphism from E to E ′ for every i ∈ Z such
that the following diagrams commute for all i ∈ Z:

E
τi−−−→ E ′

σ

y yσ′

E
τi+1−−−→ E ′

Artin and Schelter [1] defined a class of regular algebras which are main objects of
study in noncommutative algebraic geometry.

Definition 3 ([1]). Let A be a noetherian connected graded k-algebra. A is called a d-
dimensional Artin-Schelter regular (simply AS-regular) algebra if A satisfies the following
conditions:

(i) gldimA = d < ∞,

(ii) (Gorenstein condition) ExtiA(k,A) =

{
k (i = d),
0 (i ̸= d).

Theorem 4 ([2]). Every 3-dimensional quadratic AS-regular algebra A is geometric.
Moreover, when we write P(A) = (E, σ), E is either the projective plane P2 or a cu-
bic curve in P2.

(elliptic curve)

By the above theorem, it is important to study geometric algebras A(E, σ) when E is a
cubic curve in P2. In this report, we focus on studying geometric algebras A(E, σ) when
E is an elliptic curve. Such algebras are called geometric algebras of Type EC.



2. Defining relations of geometric algebras of Type EC

Let E be an elliptic curve in P2. In this section, we determine the automorphism group
Autk E and compute the defining relations of geometric algebras A(E, σ) of Type EC.

It is well-known that the j-invariant j(E) of E classifies elliptic curves in P2 up to
isomorphism, that is, two elliptic curves E and E ′ are isomorphic if and only if j(E) =
j(E ′) (see [4]).

For an elliptic curve E in P2 and a point p ∈ E, we set

Autk (E, p) := {σ ∈ Autk E | σ(p) = p}.
It is known that, for every point p ∈ E, Autk (E, p) is a cyclic group and

|Autk (E, p)| =


2 if j(E) ̸= 0, 123,

6 if j(E) = 0,

4 if j(E) = 123

(see [4]).
For each point o ∈ E, we can define an addition on E so that E is an abelian group

with the zero element o and, for p ∈ E, the map σp defined by σp(q) := p+ q is a scheme
automorphism of E, called the translation by a point p.

In this report, we use a Hesse form E = V(x3 + y3 + z3 − 3λxyz) where λ ∈ k with
λ3 ̸= 1. It is known that every elliptic curve in P2 can be written by a Hesse form (see
[3]). For points p = (a : b : c), q = (α : β : γ) ∈ E, if we define

p+ q := (acβ2 − b2αγ : bcα2 − a2βγ : abγ2 − c2αβ),

then E is an abelian group with the zero element 0E := (1 : −1 : 0) ∈ E (see [3]). From
now on, we fix this group structure on E.

For an elliptic curve E = V(x3 + y3 + z3 − 3λxyz) in P2, the j-invariant is given by the
formula

j(E) =
27λ3(λ3 + 8)3

(λ3 − 1)3

(see [3]).
If E and E ′ are elliptic curves in P2 with j(E) = j(E ′), then there exists ϕ ∈ Autk P2

which restricts to an isomorphism from E to E ′. For σ ∈ Autk E, if we set σ′ := ϕσϕ−1 ∈
Autk E

′, then two geometric algebras A = A(E, σ) and A′ = A(E ′, σ′) are isomorphic by
Theorem 2 (1). By this reason, when we study geometric algebras A(E, σ) of Type EC
such that j(E) = 0, then we may assume λ = 0. A similar comment applies to the case
j(E) = 123.

By using a Hesse form, we can give a generator of Autk (E, 0E).

Lemma 5 ([5]). Let E = V(x3 + y3 + z3 − 3λxyz) be an elliptic curve in P2. A generator
τ of Autk (E, 0E) is given by
τ(a : b : c) := (b : a : c) if j(E) ̸= 0, 123,

τ(a : b : c) := (b : a : cε) if λ = 0 so that j(E) = 0,

τ(a : b : c) := (aε2 + bε+ c : aε+ bε2 + c : a+ b+ c) if λ = 1 +
√
3 so that j(E) = 123

for (a : b : c) ∈ E, where ε is a primitive 3rd root of unity.



From now on, we fix these generators. We set

Autk (P2, E) := {σ ∈ Autk P2 | σ|E ∈ Autk E}.

It follows from Lemma 5 that

Autk (E, 0E) ≤ Autk (P2, E).

We set T := {σp ∈ Autk E | p ∈ E}. It follows that

Autk E ∼= T ⋊ Autk (E, 0E) = {σpτ
i ∈ Autk E | p ∈ E, i ∈ Z|τ |}

where

|τ | =


2 if j(E) ̸= 0, 123,

6 if λ = 0,

4 if λ = 1 +
√
3.

We call p ∈ E a 3-torsion point if 3p = 0E and set E[3] := {p ∈ E | 3p = 0E}.

Lemma 6 ([5]). Let E be an elliptic curve in P2, p ∈ E and i ∈ Z|τ |. A quadratic algebra
A(E, σpτ

i) satisfying (G2) is a geometric algebra of Type EC if and only if p ∈ E\E[3].

Let E = V(x3+ y3+ z3−3λxyz) be an elliptic curve in P2 and p = (a : b : c) ∈ E\E[3].
If σ = σp ∈ T , then

A = A(E, σp) = k⟨x, y, z⟩/

 ayz + bzy + cx2

azx+ bxz + cy2

axy + byx+ cz2

 .

This algebra A = A(E, σp) is called a 3-dimensional Sklyanin algebra.
If σ = σpτ

i ∈ Autk E, then we can compute the defining relations of A(E, σ) by using
the defing relations of 3-dimensional Sklyanin algebras and τ i ∈ Autk (P2, E).

Theorem 7 ([5]). Every geometric algebra A(E, σ) of Type EC is isomorphic to one of
the following algebras k⟨x, y, z⟩/(f1, f2, f3).

(1) If j(E) ̸= 0, 123, then
f1 = ayz + bzy + cx2,

f2 = azx+ bxz + cy2,

f3 = axy + byx+ cz2.


f1 = axz + bzy + cyx,

f2 = azx+ byz + cxy,

f3 = ay2 + bx2 + cz2.

where (a : b : c) ∈ E\E[3] and E = V(x3 + y3 + z3 − 3λxyz).



(2) If j(E) = 0, then
f1 = ayz + bzy + cx2,

f2 = azx+ bxz + cy2,

f3 = axy + byx+ cz2.


f1 = axz + bεzy + cyx,

f2 = aεzx+ byz + cxy,

f3 = ay2 + bx2 + cεz2.
f1 = ayz + bε2zy + cx2,

f2 = aε2zx+ bxz + cy2,

f3 = axy + byx+ cε2z2.


f1 = axz + bzy + cyx,

f2 = azx+ byz + cxy,

f3 = ay2 + bx2 + cz2.
f1 = ayz + bεzy + cx2,

f2 = aεzx+ bxz + cy2,

f3 = axy + byx+ cεz2.


f1 = axz + bε2zy + cyx,

f2 = aε2zx+ byz + cxy,

f3 = ay2 + bx2 + cε2z2.

where (a : b : c) ∈ E\E[3], E = V(x3 + y3 + z3) and ε is a primitive 3rd root of unity.
(3) If j(E) = 123, then

f1 = ayz + bzy + cx2,

f2 = azx+ bxz + cy2,

f3 = axy + byx+ cz2.


f1 = a(εx+ ε2y + z)z + b(x+ y + z)y + c(ε2x+ εy + z)x,

f2 = a(x+ y + z)x+ b(ε2x+ εy + z)z + c(εx+ ε2y + z)y,

f3 = a(ε2x+ εy + z)y + b(εx+ ε2y + z)x+ c(x+ y + z)z.
f1 = axz + bzy + cyx,

f2 = azx+ byz + cxy,

f3 = ay2 + bx2 + cz2.


f1 = a(ε2x+ εy + z)z + b(x+ y + z)y + c(εx+ ε2y + z)x,

f2 = a(x+ y + z)x+ b(εx+ ε2y + z)z + c(ε2x+ εy + z)y,

f3 = a(εx+ ε2y + z)y + b(ε2x+ εy + z)x+ c(x+ y + z)z.

where (a : b : c) ∈ E\E[3], E = V(x3 + y3 + z3 − 3(1 +
√
3)xyz) and ε is a primitive

3rd root of unity.

3. Classification of geometric algebras of Type EC

In this section, we give criterion to check when two geometric algebras of Type EC are
graded algebra isomorphic and graded Morita equivalent by using Theorem 2.

We set T [3] := {σp ∈ T | p ∈ E[3]}. It follows that Autk (P2, E) ∩ T = T [3] (see [6]).
Since Autk E ∼= T ⋊Autk (E, 0E) and Autk (E, 0E) ≤ Autk (P2, E), we can also determine
the structure of Autk (P2, E).

Proposition 8 ([5]). Let E be an elliptic curve in P2. Then

Autk (P2, E) ∼= T [3]⋊ Autk (E, 0E).

By Proposition 8, every automorphism σ ∈ Autk (P2, E) is written as σpτ
i where p ∈

E[3] and i ∈ Z|τ |. Hence we have the following results by Theorem 2.

Theorem 9 ([5]). Let E be an elliptic curve in P2, p, q ∈ E\E[3] and i, j ∈ Z|τ |.

(1) A(E, σpτ
i) ∼= A(E, σqτ

j) if and only if
(1-i) i = j, and
(1-ii) there exist r ∈ E[3] and l ∈ Z|τ | such that q = τ l(p) + r − τ i(r).



(2) A(E, σpτ
i) and A(E, σqτ

j) are graded Morita equivalent if and only if
(2-i) p− τ j−i(p) ∈ E[3], and
(2-ii) there exist r ∈ E[3] and l ∈ Z|τ | such that q = τ l(p) + r.

Example 10. Let E = V(x3 + y3 + z3 − 3λxyz) be an elliptic curve in P2. We assume
that j(E) ̸= 0, 123. Let p = (a : b : c), q = (b : a : c) ∈ E\E[3] and let A1 = A(E, σ1),
A2 = A(E, σ2), and A3 = A(E, σ3) where σ1 = σp, σ2 = σq and σ3 = σpτ . The defining
relations of A1, A2 and A3 are given as follows:

A1 = k⟨x, y, z⟩/

 ayz + bzy + cx2

azx+ bxz + cy2

axy + byx+ cz2

 ,

A2 = k⟨x, y, z⟩/

 byz + azy + cx2

bzx+ axz + cy2

bxy + ayx+ cz2

 ,

A3 = k⟨x, y, z⟩/

 axz + bzy + cyx
azx+ byz + cxy
ay2 + bx2 + cz2

 .

It is not easy to see from their defining relations if A1, A2 and A3 are graded algebra
isomorphic or graded Morita equivalent, however, by using Theorem 9 we can determine
if they are as follows:

(1) Since σ1 = σpτ
0 and σ2 = σqτ

0, the condition (1-i) is satisfied. Since q = τ(p) + r −
τ 0(r), the condition (1-ii) is also satisfied, hence A1

∼= A2 by Theorem 9 (1).
(2) Since σ1 = σpτ

0 and σ3 = σpτ
1, the condition (1-i) is not satisfied, so A1 ̸∼= A3.

(3) Since p = τ 0(p) + 0E, the condition (2-ii) is satisfied, so A1 and A3 are graded Morita
equivalent if and only if the condition (2-i) is satisfied, that is, p − τ(p) ∈ E[3] by
Theorem 9 (2). By calculation, we have τ(p) = −p, so A1 and A3 are graded Morita
equivalent if and only if p ∈ E[6] where E[6] := {p ∈ E | 6p = 0E}.
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